128 research outputs found

    Inherited epidermolysis bullosa

    Get PDF
    Inherited epidermolysis bullosa (EB) encompasses a number of disorders characterized by recurrent blister formation as the result of structural fragility within the skin and selected other tissues. All types and subtypes of EB are rare; the overall incidence and prevalence of the disease within the United States is approximately 19 per one million live births and 8 per one million population, respectively. Clinical manifestations range widely, from localized blistering of the hands and feet to generalized blistering of the skin and oral cavity, and injury to many internal organs. Each EB subtype is known to arise from mutations within the genes encoding for several different proteins, each of which is intimately involved in the maintenance of keratinocyte structural stability or adhesion of the keratinocyte to the underlying dermis. EB is best diagnosed and subclassified by the collective findings obtained via detailed personal and family history, in concert with the results of immunofluorescence antigenic mapping, transmission electron microscopy, and in some cases, by DNA analysis. Optimal patient management requires a multidisciplinary approach, and revolves around the protection of susceptible tissues against trauma, use of sophisticated wound care dressings, aggressive nutritional support, and early medical or surgical interventions to correct whenever possible the extracutaneous complications. Prognosis varies considerably and is based on both EB subtype and the overall health of the patient

    Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action

    Get PDF
    The UN COP26 2021 conference on climate change offers the chance for world leaders to take action and make urgent and meaningful commitments to reducing emissions and limit global temperatures to 1.5 °C above pre-industrial levels by 2050. Whilst the political aspects and subsequent ramifications of these fundamental and critical decisions cannot be underestimated, there exists a technical perspective where digital and IS technology has a role to play in the monitoring of potential solutions, but also an integral element of climate change solutions. We explore these aspects in this editorial article, offering a comprehensive opinion based insight to a multitude of diverse viewpoints that look at the many challenges through a technology lens. It is widely recognized that technology in all its forms, is an important and integral element of the solution, but industry and wider society also view technology as being part of the problem. Increasingly, researchers are referencing the importance of responsible digitalization to eliminate the significant levels of e-waste. The reality is that technology is an integral component of the global efforts to get to net zero, however, its adoption requires pragmatic tradeoffs as we transition from current behaviors to a more climate friendly society

    DNA and bone structure preservation in medieval human skeletons

    Get PDF
    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimized a method that is frequently used for isolating DNA from modern samples, Chelex® 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR® Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex® 100 is for isolating ancient DNA from archaeological bones and teeth. This optimized method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250 bp were successfully amplified

    Coagulation Factor XIIIA and XIIIB polymorphisms in the North of Germany (Mecklenburg area)

    No full text
    corecore